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Abstract—Cross-domain collaborative filtering (CDCF) is an
effective method to alleviate the data sparsity problem by trans-
ferring knowledge from a source domain to assist the learning of
a target domain. However, most of the existing CDCF approaches
require that the two domains have at least one overlapping side
(either on user or item) and the raw data can be fully shared
across domains, which is difficult to be satisfied in reality due to
corporate barriers and the risk of user privacy leakage. Although
there are some attempts on applying CDCF to the scenario
without overlapping data by transferring cluster-level rating
patterns, these methods fail to mine the complex connections
between the two domains, which makes their performance still
not satisfactory. To address these problems, we propose a novel
deep Interaction Distribution Transfer (IDT) framework, which
extracts and transfers knowledge from the feature distribution
formed by the whole dataset rather than specific data. In this way,
the knowledge is embedded into high-order features for transfer,
which can effectively avoid privacy leakage during the data
sharing process. Moreover, as a flexible framework, IDT obtains
powerful feature extraction ability from the base model, which
guarantees its superior performance. Extensive experiments on
three benchmark datasets are conducted and the results verify
the effectiveness of the proposed framework.

Index Terms—Cross-domain recommendation, Graph convo-
lutional network

I. INTRODUCTION

Modern recommender system in general are based on col-
laborative filtering (CF), since it does not require auxiliary
information. Among various CF techniques, matrix factoriza-
tion (MF) [1], which represents users and items by learning a
latent space, has become a de facto standard for latent factor
based recommendation. Recently, some studies try to intro-
duce deep learning techniques, such as multi-layer perceptron
(MLP) [2]–[4] and graph neural networks (GNN) [5]–[7], into
recommendation and achieves remarkable progress. However,
these models also require more data, which makes the data
sparsity problem become a major limitation of them.

The development of transfer learning brings a new oppor-
tunity for addressing the data sparsity problem. By applying
transfer learning to collaborative filtering, many cross-domain
collaborative filtering (CDCF) algorithms have been proposed,
whose main idea is to first learn knowledge from an auxiliary
domain with sufficient data, and then use the learned knowl-
edge to assist the learning of the target domain. In general,
CDCF models can be classified into four types [8]: 1) Based
on overlapping users; 2) Based on overlapping items; 3) Based
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Fig. 1. An example illustrating knowledge transfer from source domain Book
to target domain Movie.

on both overlapping users and items; and 4) Based on non-
overlapping data. Most of existing methods [9]–[15] fall into
the first three types, which rely on overlapping data as a bridge
for knowledge transfer. Though effective, the assumptions of
these methods that the overlapping data always exists and
the raw interaction data can be fully shared across domains
may not be realistic in some cases. For example, if the two
different domains (websites) are from different companies, it
is usually difficult to let them share user interaction data due
to the constraint of company policy. Therefore, it poses strong
demand for the research on the fourth type. But the lack of
any overlapping data between domains also greatly increases
the difficulty of knowledge transfer, which makes researches
on this type relatively rare.

As far as we know, Code Book Transfer (CBT) [16] is the
first CDCF work that falls into the fourth type, whose main
idea is transferring the cluster-level user-item rating patterns
(also called codebook) across domains. Later, there are also
some attempts on improving CBT [17]–[20]. However, these
methods are limited by the inherent way of transferring cluster-
level rating patterns, and have not tried to mine more complex
relation with neural network. In addition, Cremonesi et al.
[21] have shown that the improvement in CBT actually may
not come from the transfer of the source domain information,
which poses questions on the effectiveness of these methods.

To address these problems, we propose a novel CDCF
framework named Interaction Distribution Transfer (IDT)
for the scenario without any overlapping data. Fig. 1
presents an example to help understand our idea. Consider a
non-overlapping cross-domain recommendation scenario with
Book as the source domain and Movie as the target domain.
Suppose that each genre of book or movie is regarded as the
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explicit representation of a dimension in the latent interaction
feature. It can be observed that Adventure and SCI-FI are
the common genres of the two domains, while Poetry and
Action are domain specific genres. In the latent feature space,
we refer to them as domain common features and domain
specific features, respectively. A horizontal rounded rectangle
with blue line in Fig. 1 represents an interaction behavior.
The colored squares show the preference values of a user
on the multi-dimension latent feature, and each dimension of
the latent feature implies a distribution correspond to a genre,
which is marked as a vertical rectangle with dotted line. We
believe that there is some similarity between the distributions
of domain common features in these two domains. We notice
that [22] makes similar assumption as ours, which assumes that
user and item latent vectors in different domains can be gener-
ated from a common Gaussian distribution, and experimentally
verifies the assumption. Thus, the main goal of IDT is to
transfer more accurate distribution of domain common features
learned from the source domain to guide feature learning
in the target domain. To this end, we also design a mask
operation to distinguish domain common features and domain
specific features. Based on two typical CF models, BPRMF
and LightGCN, we instantiate our framework IDT to form two
methods, BPRMF-IDT and LightGCN-IDT, and show their
effectiveness experimentally. In sum, the main contributions
of this paper are as follows,
• We propose a cross-domain recommendation framework

named IDT suitable for the scenario without any overlap-
ping data. Specifically, IDT transfers the distribution of
domain common features, a high-level abstracted knowl-
edge extracted by CF base models with strong feature
extraction capability. In this way, the risk of user privacy
leakage can be avoided as compared to existing methods
that utilize user behavior data.

• We conduct extensive experiments on two recommenda-
tion scenarios with three benchmark datasets. The results
demonstrate the superior performance of IDT. Moreover,
we also design controlled experiments according to [21]
to verify the effectiveness of our methods in transferring
source domain knowledge.

II. RELATED WORK

In this section, we briefl y review some researches that are
closely related to our work.

A. Learning-based CF Methods in Single Domain

CF is a commonly used technology in modern recommen-
dation systems. Early CF models, such as matrix factorization
(MF), map user (or Item) ID to the embedded space, and
establish the matching relationship between the user and item
through inner product. These models are comparatively easy to
implement, but lack nonlinear feature extraction ability, which
limits their performance. Later, NeuMF [2] and DMF [4]
propose to model projection and matching functions utilizing
neural network. More recently, attention mechanisms are intro-
duced to automatically learn the importance of each historical

interaction, such as in ACF [23] and DeepICF [24] Inspired by
the development of graph neural networks (GNN), there are
some efforts on exploiting user-item interaction graph to infer
users preference. For example, GCMC [5] updates the model
parameters in multiple rating levels by the standard of GNN.
SpectralCF [6] designs a new spectral convolution model, to
explore deep connections in the spectral domain between users
and items. NGCF [25] injects the collaborative signal into the
embedding process via propagating embeddings on it. Light-
GCN [7] simplifies and elevates NGCF by removing some
unnecessary and harmful operations. Corso et al. [26] prove
the need for multiple aggregators mathematically and propose
PNA architecture combining them with degree-scalers. Huang
et al. [27] present MixGCF, a general negative sampling plugin
to synthesize hard negatives instead of sampling raw negatives
from data. However, data sparsity remains a limiting factor for
the accuracy of existing models, especially with the increase
of model complexity.

B. Cross-Domain Collaborative Filtering Methods

As an effective technique to address the data sparsity
problem, the research on Cross Domain Collaborative Filtering
(CDCF) is increasing. Among them, research [12], [28],
[29] on CDCF with overlapping users develops the fastest.
Early, CMF [9] jointly factorizes the rating matrix from two
domains by sharing user latent factors. CoNet [30] completes
the transfer of interaction features between domains through
cross-mapping. With the development of Domain adaption
(DA) technique, DARec [31] models the difference between
two domains by combining DA instead of cross-mapping in
CoNet. BiTGCF [32] further distinguishing users common
features and specific features between two domains on the
graph structure. Additionally, there have been studies [33] that
prioritize the protection of user privacy and opt for reliance
on overlapping items. However, the existence of overlapping
data is still a must for these methods.

On the other hand, the research on CDCF with non-
overlapping data is relatively rare. Li et al. [16] propose a
codebook transfer (CBT) model to transfer the cluster-level
rating patterns compressed from the source domain data to
the target domain. Gao et al. [18] further consider domain
specific features to form the CLFM algorithm. Later, many
variants based on CBT have been proposed [17], [34], but
the full source domain matrix constraint is not relaxed until
He et al. [35] propose the incomplete orthogonal nonnegative
matrix tri-factorization (IONMTF) method. Recently, mixed
heterogeneous factorization (MHF) [36] is proposed, which
accounts for domain heterogeneity comprehensively. However,
these methods still face the three major limitations mentioned
earlier.

III. PROBLEM DEFINITION

Given two domains, one source domain Ds and one target
domain Dt. Let (us, is, r

s
ui) ∈ Ds denote the interaction

sample of the source domain, where us, is, and rsui are
users, items, and interactions in Ds respectively. Similarly, let
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Fig. 2. The Architecture of IDT. The source domain provides the trained Xs

to the target domain.

(ut, it, r
t
ui) denote the interaction sample in Dt. Us and Ut

are the sets of users in the corresponding domain. Since we
consider non-overlap in this work, Us∩Ut = ∅ and Is∩It = ∅.
In learning based CF methods, users and items are mapped
to the latent feature by learnable parameters. We believe
that Ds and Dt, after being decoupled in high dimensions,
have partially common features–domain common features,
and partially specific features–domain specific features. The
purpose of our cross-domain transfer framework IDT is to use
the knowledge (the distribution on domain common feature)
learned from Ds to assist the learning of model in Dt, so as
to improve the recommendation performance of Dt.

IV. METHODOLOGY

The overall structure of our framework is shown in Fig-
ure 2, which mainly includes two modules: 1) The single-
domain recommendation module acting on the two domains
respectively, which serves as the base model in our framework.
2) The distribution transfer module, which is responsible for
extracting knowledge (domain common distribution) from the
source domain to assist the training in the target domain, is
the key module in our framework.

A. Base Models

Existing CF models can be roughly classified into two
categories [3]: representation learning-based CF methods (RL-
CF) and matching function learning-based CF methods (ML-
CF). RL-CF methods are committed to learning more accurate
feature representations, and often use simple matching func-
tions, such as inner product or cosine similarity, to calculate
the interaction score. Our framework IDT is applicable to RL-
CF models. In order to better verify its effect, we choose two
representative RL-CF methods as the base models: BPRMF [1]
and LightGCN [7]. The architecture of our framework is
shown in Fig. 2. Note that since we use the same architecture
for source and target domains, we use u (i) to denote us (is)
and ut (it) collectively if no confusion arises.

Embedding: This module maps the IDs of user u and item
i into a dense feature space. Specifically,

e(0)u = P>zu ∈ Rd

e(0)i = Q>zi ∈ Rd
(1)

where P and Q are learnable parameter matrices of u and i,
respectively, and are also often referred to as embedding ma-
trices. d denotes the embedding size, and zu and zi represent
one-hot (or multi-hot in some other RL-CF methods) encoding
for u and i. For ID embedding, this module can also be seen
as a look-up table building by a parameter matrix, which will
be optimized end-to-end.

Feature Propagation Layer: This layer captures the non-
linearity of features obtained by the embedding layer. Note
that if the base model is BPRMF, then such a layer is not
included. Therefore, we only detail the feature propagation
rules in LightGCN here. As shown in Fig. 2, the interaction
data between users and items can form a bipartite graph G. The
main idea of graph convolution is to integrate the information
from neighbors to improve the features of the current node. By
stacking multi-layer graph convolution, deeper relationships
between nodes can be digged out by multi-layer feature
propagation. The feature propagation layer in LightGCN can
be abstracted as,

e(l+1)
u =

∑
i∈Nu

1√
|Nu|

√
|Ni|

e
(l)
i

e
(l+1)
i =

∑
u∈Ni

1√
|Ni|

√
|Nu|

e(l)u

(2)

where e(l)u and e(l)i respectively denote the refined features
of user u and item i after l layers propagation, Nu and Ni
are the sets of first-hop neighbors of user u and item i, and

1√
|Nu|
√
|Ni|

indicates the discount factor on the path u ↔ i,

which uses symmetric regularization about the degree of two
nodes to reduce the influence of active users or popular items
in neighbors on the features of the current node.

Output Layer: This layer predicts the interaction probabil-
ity between a given user and an item by a matching function
based on their final features. Specifically,

r̂ui = e>u ei (3)

where eu (ei) represents the final features of u (i). Note
for BPRMF, eu = e(0)u . For LightGCN, considering that the
features from different layers can complement each other,
eu = 1

(L+1)

∑L
l=0 e

(l)
u , and ei can be obtained similarly.

B. Distribution Transfer Module

Acquisition of interaction distribution: In our base model
BPRMF, u and i are mapped to eu and ei, respectively, which
represent the preference (or attribution) mapping of users and
items in a common latent space. We can capture the interactive
feature x in the d-dimensional latent space by utilizing an
interaction function f(eu, ei) : Rd × Rd 7→ Rd. There are
many interaction functions, such as element-wise product or
nonlinear neural network layers. Here, we use the element-
wise product � as the interaction function, which is simple yet
effective, and moreover, does not introduce extra parameters,

x = f(eu, ei) = eu � ei (4)
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By compressing the information of all interaction instances
into a multi-dimensional feature space, we can obtain a set
that contains all interaction features as X = {x|(u, i) ∈ D},
which characterizes a multi-dimensional interaction feature
distribution (MDIFD) in the current domain. We use Xs
and Xt to represent the interaction feature set in Ds and
Dt, respectively. The MDIFD Xs learned from Ds is the
knowledge we plan to transfer to Dt.

Compared with BPRMF, LightGCN add multiple feature
propagation layers. In each layer, the nodes are perfected
through the information integration of neighbor nodes, which
is also the reason why LightGCN can mine higher-order
relationships between nodes. However, the adjacency matrices
of the two domains, indicating the connected edges in the U-
I graph, are completely different. Therefore, the high-order
interaction features obtained by LightGCN are more specific
to the task of the current domain, which may limit the effect
of knowledge transfer. This point has also been verified in the
study [37]. To address this issue, we obtain the interaction
feature x in LightGCN by explicitly considering low-order
features. Specifically,

x = f(eu, ei) + εf(e(0)u , e(0)i ) = eu � ei + ε(e(0)u � e(0)i ) (5)

where ε is a hyper-parameter, controlling the intensity of the
low-order interactive features.

Transfer of MDIFD: The goal of cross-domain transfer is
to use Xs to guide and assist the model learning in Dt. Note
the target domain itself will also produce Xt during training.
Consequently, we have two expectations for model training
in Dt: 1) complete the CF task by using its own interaction
data; and 2) adjust Xt to make it close to Xs, which is a
reasonable way to reflect domain similarities based on the
assumptions we mentioned above. For the first expectation,
we construct a conventional CF loss Lcf . For the second
expectation, we define a new transfer loss Ltr to maintain
the similarity between Xs and Xt. There are many ways
to measure the similarity between two distributions, such as
the well-known KL divergence and its symmetric form, JS
divergence. However, they become inapplicable or illogical
here, because two distributions from different domains are not
encoded against the same data. Here, we employ Maximum
Mean discrepancies (MMD) distance [38], a commonly used
metric in domain adaptation, as similarity metrics. Specifically,
MMD is defined as the distance between mean values of the
two distributions in reproducing kernel Hilbert space (RKHS).
Formally,

MMD2
k(Xs,Xt) = || 1

|Xs|
∑

xs∈Xs

φ(xs)− 1

|Xt|
∑

xt∈Xt

φ(xt)||2Hk

=
1

|Xs|2
∑

xs∈Xs

∑
x′s∈Xs

k(xs, x′s) +
1

|Xt|2
∑

xt∈Xt

∑
x′t∈Xt

k(xt, x′t)

− 2

|Xs||Xt|
∑

xs∈Xs

∑
xt∈Xt

k(xs, xt)

(6)

where φ is mapping function, transforming the data to RKHS
Hk endowed with kernel k. The relationship between φ and

kernel k is k(xs, xt) = 〈φ(xs), φ(xt)〉, where 〈·, ·〉 denotes
the inner product. Multi-kernel MMD [39] is usually applied
to reduce the huge influence of the selection of k on the
result by defining k as the convex combination of m Gaussian
kernels {ka(xs, xt) = e−||xs−xt||2/γa}, where γa is a varying
bandwidth. We also adopt multi-kernel MMD and derive
multi-kernel k by k =

∑m
a=1 βaka, where βa is an coefficient

satisfying
∑m
a=1 βa = 1, βa > 0,∀a. In order to simplify

calculation, we set βa = 1
m for any a and m = 5 in

this work. In the actual optimization process, we convert
it into matrix form by constructing kernel matrix for easy
implementation. The detail derivation and formula can be
found in subsection 3.3 of [?]. By minimizing the MMD
loss between two domains, we can purposefully guide the
learning of interaction distribution in Dt with source domain
information as prior knowledge.

Mask domain specific features: When transferring Xs, we
need to eliminate the influence of domain specific features.
One possible way to achieve this goal is masking these features
when calculating MMD loss. It is well recognized that the
existence of entanglement between features due to latent space
mapping makes the mask operation rather difficult. In this
work, for better model efficiency, we do not follow the typical
principle to first adopt complex disentanglement operation and
then mask, but use a sub-optimal but efficient algorithm to
eliminate the influence of entanglement between features on
the mask operation. Specifically,

• We define our mask operation R(X , {o}) as setting the
{o}-th dimension values of all x in X to 0. This operation
can be seen as removing the effect of {o}-th dimension
values on the similarity between the overall distributions
from all dimensions. The formula of the Gaussian ker-
nel function k(xs,xt) = e−||xs−xt||2/γa guarantees the
rationality of this statement1.

• By traversing the set {o|o ∈ [1, · · · , d]}, we
can calculate and obtain a set S = {yo|yo =
MMD2(R(Xs, {o}), R(Xt, {o}))}.

• We use the dimensions corresponding to K (K is a
hyper-parameter) smallest values from S to form a set
M = {o|yo ∈ top-K(S)2}, whose elements are specified
as domain-specific features. Take K=1 as an example, the
principle of our mask operation is selecting a dimension
such that removing it greatly reduces the MMD distance
between the two domains. We believe that the distribution
differences between two similar domains on specific
feature should be much larger than on common feature.
Therefore, if the MMD distance between distributions
becomes the smallest in set S only because the o-th di-
mension feature is removed, then it has a high probability
of being domain-specific features with large distribution
differences.

1For convenience, the single-kernel kernel function is listed here, and the
same conclusion can be obtained for multi-kernel kernel function mentioned
above.

2Represent the top-K smallest values from set S.
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Our way of computing the MMD distance for all features
except one specified dimension every time preserves the
entanglement among the remaining d − 1 dimensions, which
eliminate the influence of entanglement between features on
mask operation as much as possible.

After obtaining a relatively mature MDIFD by a certain
steps of training in the target domain (e.g., 100 epochs), we
can use the mask operation R(Xs,M) and R(Xt,M) to mask
the two MDIFDs to exclude the influence of domain-specific
features in both domains. Subsequently, the transfer loss Ltr
can be expressed as Ltr = MMD2(R(Xs,M), R(Xt,M)).

C. Model Training

Learning based on interactive data in the target domain is the
main part of model training. In this paper, we consider a pair-
wise CF loss function Lcf , which focuses on learning ranks,
and leave the point-wise loss as future work. The BPR loss,
which is the most commonly used pair-wise loss, is employed,

Lcf (r̂tui, r̂
t
uj) =

∑
(ut,it,jt)∈Ot

−lnσ(r̂tui − r̂tuj) + γ||Θ||22 (7)

where it is the observed interactive item by ut, jt is the sample
from un-interacted item, r̂tui ( or r̂tuj) indicates the predicted
scores of pair (ut, it) (or (ut, jt)). Θ = {P,Q} denotes the
learnable parameter set in our recommendation task, and γ is
a hyper-parameter, controlling the L2 regularization strength.
Lcf in the target domain and Ltr from the transfer module

are weighted and summed together to constrain the training of
the target domain. The joint loss is then defined as,

Ljoint = Lcf + λ ∗ Ltr (8)

where λ is a hyper-parameter, controlling the intensity of
knowledge transfer. We adopt mini-batch Adam to opti-
mize the model and update the parameters, therefore, Xt =
{xt|(ut, it) ∈ Dbatcht } (Dbatcht denotes the sample batch). It
is worth noting that Xs is obtained from the trained source
domain and can be reused by other target domains. In order
to facilitate the training of the model, in the actual experiment
process, we randomly sampled 1000 samples xs from Xs each
time as the source domain MDIFD.

D. Model Extension

Based on the above analysis, we can find that the guid-
ance from source domain is the main factor to improve the
performance of the target domain. Then, it poses a question
whether utilizing multiple source domains can help achieve
better results or make the performance more stable? To answer
this question, we conduct a model extension by applying our
model to a multi-source domain scenario. Specifically, given
N source domains, denoted by Di where i ∈ {1, · · · , N},
and Xsi is the trained MDIFD of the corresponding source
domain, one thing needs to be considered is the allocation for
the proportion (or weight) of the source domains. Intuitively,
we expect that the closer the source and target domains are,
the higher the weight will be. However, the similarity between
source and target domains is difficult to measure. Here, we

TABLE I
STATISTICS OF DATASETS

Type Dataset #User #Item #Interaction Sparsity

Source Amusic 844 9,714 37,041 99.55%
Avideo 1913 15,767 73,416 99.76%

Target BookCross 4,969 43,479 504,592 99.77%
Amovie 15,067 69,629 877,736 99.92%

Overlapped Amovie V 6,064 39,154 198,647 99.91%

abstract and simplify it to Ltr. The lower the Ltr(Xsi ,Xt),
the more “similar” the two domains Di and Dt are. On this
basis, we form the loss function with multi-source domains,

Ljoin = Lcf (r̂tui, r̂
t
uj) + λ

∑
i

βi ∗ Ltr(Xt,Xsi) (9)

βi =
1

N − 1
(1− Ltr(Xt,Xsi)∑

j Ltr(Xt,Xsj )
) (10)

Note when Ltr in all source domains are equal,
Ltr(Xsi ,Xt) = Lmean = 1

N

∑N
j Ltr(Xt,Xsj ), the weighted

coefficient βi = 1/N , and when Ltr(Xsi ,Xt) > Lmean,
βi < 1/N . According to Equation (10), the weights of multi-
source domains can be automatically adjusted according to
the “similarity” between them and the target domain during
training.

V. EXPERIMENT

A. Experimental setup

1) Dataset: We evaluate our proposed model in two rec-
ommendation scenarios: 1) Without any overlapping, in which
we take Digital Music (Amusic for short)3 and Video Games
(Avideo for short)3 as the source domain, and BookCross4 and
Movies and TV (Amovie for short)3 as the target domains.
Those datasets are filtered to retain users with interactions
greater than 20 and items with interactions greater than 5.
To guarantee a non-overlapping cross-domain scenario, an
independent remapping of source domain and target domain
is carried out. 2) With user-overlapping, in which we take
Avideo as the source domain, and then extract the common
users between Avideo and Amovie to derive a sub dataset
of Amovie, denoted by Amovie V, as the target domain.
For both Avideo and Amovie V, we retain users and items
with interactions greater than 5 to keep more interactive data
compared to the previous data processing. Table I summarizes
the statistics of the datasets we used.

2) Evaluation protocol: We adopt the leave-one-out evalu-
ation method, which has been widely used in the literature [2],
[4], [30], [32]. Specifically, we randomly select 99 items from
each user’s non-interacted items to form negative samples. The
recommendation model sorts these 100 items by prediction
scores and output top-N items. We use the commonly used
Hit Ratio (HR), Normalized Discounted Cumulative Gain
(NDCG) and Mean Average Precision (MAP) to evaluate the
ranking performance. For all the three measures, we truncate
the ranked list at {5, 10}.

3http://jmcauley.ucsd.edu/data/amazon/
4http://www2.informatik.uni-freiburg.de/ cziegler/BX/
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TABLE II
PERFORMANCE COMPARISON IN TERMS OF HR, NDCG AND MAP IN THREE DATASET. (·) INDICATES SOURCE DOMAIN DATASET WE USED. - INDICATES
THE MODEL IS NOT APPLICABLE TO THE CURRENT SCENARIO. THE BEST PERFORMANCE IS IN BOLDFACE AND SECOND-BEST UNDERLINED. ALL OF OUR

RESULTS ARE STATISTICALLY SIGNIFICANT WITH p < 0.05 UNDER T-TEST. ∗ INDICATES THE VALUES ARE TO THE BASE MODELS.

Methods
BookCross Amovie Amovie V

top-5 top-10 top-5 top-10 top-5 top-10
HR NDCG MAP HR NDCG MAP HR NDCG MAP HR NDCG MAP HR NDCG MAP HR NDCG MAP

CDAE 0.4918 0.3639 0.3216 0.6154 0.4035 0.3371 0.6794 0.5347 0.4866 0.7882 0.5696 0.5008 0.4976 0.3733 0.332 0.6118 0.4103 0.3473
NGCF 0.5016 0.3717 0.33 0.6277 0.4145 0.3477 0.6848 0.5446 0.4947 0.7922 0.5724 0.5091 0.4963 0.3745 0.3371 0.6079 0.4122 0.3492
CoNet - - - - - - - - - - - - 0.4726 0.3391 0.2956 0.5989 0.3791 0.3118
U-DARec - - - - - - - - - - - - 0.4363 0.3246 0.2876 0.5638 0.3621 0.3021
BiTGCF - - - - - - - - - - - - 0.5312 0.4123 0.3727 0.6395 0.4474 0.3872
BPRMF 0.4484 0.3317 0.2932 0.5721 0.3716 0.3096 0.6255 0.4814 0.4339 0.744 0.5211 0.4515 0.4411 0.3327 0.2971 0.5537 0.3645 0.3063
BPRMF-IRT 0.3576 0.2392 0.2005 0.5031 0.2856 0.2188 0.5014 0.3365 0.2825 0.6608 0.3874 0.3028 0.4203 0.2847 0.2405 0.5482 0.3234 0.2513
BPRMF-IDT(M) 0.4969 0.3699 0.3283 0.6148 0.4092 0.3464 0.6654 0.5226 0.4753 0.7734 0.5587 0.4913 - - - - - -
BPRMF-IDT(V) 0.4905 0.3655 0.3248 0.6033 0.4031 0.341 0.668 0.5285 0.4813 0.7775 0.5627 0.4952 0.4554 0.3445 0.308 0.5594 0.375 0.3179
Improvement* 10.82% 11.52% 11.97% 7.46% 10.12% 11.89% 6.79% 9.78% 10.92% 4.50% 7.98% 9.68% 3.24% 3.55% 3.67% 1.03% 2.88% 3.79%
LightGCN 0.5232 0.393 0.3503 0.6454 0.4254 0.3574 0.6987 0.5549 0.5064 0.8029 0.588 0.5187 0.509 0.3924 0.3447 0.6182 0.4206 0.3548
LightGCN-IRT 0.4923 0.3593 0.3154 0.6173 0.4006 0.3336 0.6764 0.5233 0.4727 0.7872 0.5622 0.4927 0.5000 0.3701 0.3275 0.612 0.4047 0.3394
LightGCN-IDT(M) 0.5371 0.4045 0.3609 0.6592 0.4417 0.3753 0.7098 0.5607 0.5112 0.8126 0.5928 0.5234 - - - - - -
LightGCN-IDT(V) 0.5408 0.4057 0.3612 0.6593 0.4431 0.3759 0.7102 0.5656 0.5177 0.8134 0.598 0.5301 0.5221 0.4045 0.367 0.6261 0.4398 0.382
Improvement* 3.36% 3.23% 3.11% 2.15% 4.16% 5.18% 1.65% 1.93% 2.23% 1.31% 1.70% 2.20% 2.57% 3.08% 6.47% 1.28% 4.56% 7.67%

3) Compared methods: We compare our two instantiated
methods BPRMF-IDT and LightGCN-IDT with several repre-
sentative methods. Considering that the CBT-based approaches
are not suitable for implicit recommendation and pose unaf-
fordable computation cost due to the codebook construction
operation, we do not include them as competitors.

Baselines in Single domain:
• BPRMF5 [1] optimizes MF with the BPR loss.
• CDAE6 [40] extends Denoising Auto-Encoder for item

recommendation.
• NGCF7 [25] explores the high-order relations between

users and items by graph convolutional network.
• LightGCN5 [7] simplifies the aggregation function in

NGCF, resulting in better recommendation performance.
Baselines in Cross domain:
• CoNet8 [30] is a deep model, which connects hidden

layers in two base MLP networks by cross mapping.
• U-DARec9 [31] is a domain adaption-based model that

shares rating patterns of the same user in different do-
mains after encoding with autoencoder.

• BiTGCF10 [32] is a graph-based model, which realizes
two-way transfer of knowledge across domains by using
common users as bridge.

To make a fair comparison, we change the losses of all
methods to BPR. Moreover, to avoid the fake transfer effect as
in CBT-based methods pointed by Cremonesi et al. [21], we
also conduct a set of controlled experiments by replacing Xs

with Xrandom, which is generated by a randomly initialized
embedding matrix. We call the transfer method with Xrandom

as IRT, and instantiate it to obtain two methods, BPRMF-IRT
and LightGCN-IRT, for comparison.

5https://github.com/gusye1234/LightGCN-PyTorch
6https://github.com/jasonyaw/CDAE
7https://github.com/huangtinglin/NGCF-PyTorch
8http://home.cse.ust.hk/ghuac/
9https://github.com/Yu-Fangxu/DARec

10https://github.com/sunshinelium/Bi-TGCF

Fig. 3. The performance of IDT with multiple source domains on target
domains BookCross and Amoive, respectively. Legends show the dataset of
source domain. The black dotted line shows the scores of the base model.

4) Parameter settings: We set the common parameters
embedding size as 64, learning rate as 0.001, the same as
most compared methods [7], [25]. Batch size is set as 1048,
except for CDAE and DARec, in which the number is 256.
Regularization coefficient γ is varied within the range [1e −
3, 1e− 4, 1e− 5]. Loss function is optimized with mini-batch
Adam. Other model-specific parameters are tuned to the best
fit according to the values recommended in their respective
papers. Unless otherwise specified, we report the performance
of IDT with the following default settings: ε = 0.3, λ = 0.5
and K = 2. All our code will be made publicly available.

B. Performance comparison

Table II shows the summarized results on the two tar-
get datasets, from which we have the following key obser-
vations:(1) The performance improvements of BPRMF-IDT
over BPRMF as well as LightGCN-IDT over LightGCN on
Bookcross and AMovie demonstrate the effectiveness of our
IDT framework, indicating that transferring domain common
feature distributions indeed can help achieve better recommen-
dation performance. Moreover, the promotion of IDT on Light-
GCN is not significant as compared to that on BPRMF. The
reason might be that the latent features learned by LightGCN
is more accurate and specific, which makes it more difficult
to achieve cross-domain transfer. (2) The two IRT methods
performs significantly worse than their IDT counterparts, and
even worse than corresponding base models. This may be due
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Fig. 4. Impact factor curves of LightGCN-IDT on Avideo→ Amovie task.

Fig. 5. Visual presentation about IDT on Avideo→ Amovie task.

to the occurrence of negative transfer when transferring the
random matrix without any knowledge. This result also verifies
that IDT can effectively transfer knowledge from the source
domain. (3) LightGCN-IDT performs better than CoNet, U-
DARec and on Amovie V, indicating that the introduction
of graph learning further improves the knowledge extraction
ability of cross-domain model. It can also be observed that
LightGCN-IDT performs worse than BiTGCF. The reason
might be that BiTGCF adopts the way of joint training, and
the mutual improvement on both sides in joint training further
strengthen its advantages. However, BiTGCF also requires
the raw data from both domains, which is often unaccessible
due to the risk of privacy leakage. Although the performance
is slightly inferior to that of BiTGCF, LightGCN-IDT still
achieves the second best result, and does not require any
overlapping data.

C. Detail analysis about IDT

1) Performance with multiple source domains: Obviously,
the selection of source domains may have a significant impact
on the performance of IDT. Fig. 3 shows the HR@5 perfor-
mance (NDCG and MAP have the same performance trends)
of two instantiated models of IDT with one or multiple source
domains. As can be seen, with Avideo or Amusic as single
source domain, IDT achieves the best performance, while
IDT’s performance on the Amovie→ BookCross task is the
worst, and its performance on the BookCross → Amovie
task is only slightly better. The results are basically consistent
with the sparsity of the data sets, demonstrating the importance
of density in modeling interaction features. On the other
hand, IDT’s performance with two source domains usually
fall in between the performances of using the two single
source domains individually. A similar trend can be observed

for the case with three source domains. The reason for this
might be that interaction features extracted under the guidance
of multiple source domains are usually more common but
less frequent, especially when the similarity and density of
multiple source domains and target domains are significantly
different. On the other hand, however, this phenomenon has
the advantage of being more stable and less susceptible to
source domain selection sensitivity.

2) Impact factor analysis: In order to figure out the influ-
ences of hyper-parameters on IDT, we discuss three important
hyper-parameters: λ in (8), which controls the intensity of
knowledge transfer; ε in (5), which controls the weight of low-
order features of MDIFD when transferring on LightGCN; and
K, which is the number of domain-specific feature selected
from MDIFD. We show their influences on the performance
in Fig. 4. Due to space concern, only the Top-5 performance
of LightGCN-IDT on Amovie is presented.

From Fig. 4(a), it can be found that the model performs
the worst when λ = 0, possibly due to the lack of assistance
from the source domain. When λ ranges from 0.1 to 1, the
constraints imposed by Ltr takes effect and the model achieves
significantly better performance. In sum, the existence of Ltr
has more prominent influence than the variation of λ.

From Fig. 4(b), it can be observed that the model performs
the best when ε = 0.7, and performs the worst when ε = 0.
The reason might be that the higher-order relations between
users and items, captured by the base model LightGCN, spec-
ify the interaction relationship of the domain and may affect
the subsequent transfer. Therefore, appropriately increasing the
proportion of low-order features of MDIFD actually will lead
to performance improvement.

From Fig. 4(c), it can be seen that the model performs the
best when K is 2 or 4. With the increase of K, the performance
first decreases and then tends to be stable. This indicates
that properly relaxation of the constraint Ltr by increasing
the number of domain specific features K can improve the
performance, but too much increment will also cause under-
utilization of knowledge transfer from the source domain.

3) Visual presentation about IDT: To further demonstrate
the effectiveness of IDT on domain adaptation, we plot the
t-SNE in Fig. 5 to visualize the learned multi-dimensional in-
teraction feature distribution (MDIFD) on Avideo→ Amovie
task, using LightGCN (abbreviated as LGN in the Figure) as
the base model. Red and orange points in the figure represent
positive and negative samples from the source domain Avideo,
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while blue and green points represent positive and negative
samples from the target domain Amovie. It can be observed
that when the IDT module is included, the distributions of
the target and source domains become more similar, and the
distinction between positive and negative points becomes more
clear. This demonstrates the effectiveness of IDT, showing that
the IDT module does, in fact, utilize the source distribution.

VI. CONCLUSION

In this paper, we propose a novel cross-domain collaborative
filtering framework IDT for Top-N recommendation, which
does not require any data overlapping between domains. Based
on the assumption that there are partially shared latent features
in similar domains, we extract the distribution on domain-
common features from the source domain to assist the model
learning of the target domain. A weight operation is used to
balance and coordinate the knowledge transfer loss with the
CF loss in the target domain. This process does not involve
any raw data exchange between the two domains, and hence
can avoid leaking user privacy effectively. Extensive exper-
iments have been conducted, and remarkable performance
improvements on several benchmark datasets demonstrate the
effectiveness of our proposed framework.
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